Causal Explorer: A Causal Probabilistic Network Learning Toolkit for Biomedical Discovery

نویسندگان

  • Constantin F. Aliferis
  • Ioannis Tsamardinos
  • Alexander R. Statnikov
  • Laura E. Brown
چکیده

Causal Probabilistic Networks (CPNs), (a.k.a. Bayesian Networks, or Belief Networks) are well-established representations in biomedical applications such as decision support systems and predictive modeling or mining of causal hypotheses. CPNs (a) have well-developed theory for induction of causal relationships, and (b) are suitable for creating sound and practical decision support systems. While several public domain and commercial tools exist for modeling and inference with CPNs, very few software tools and libraries exist currently that give access to algorithms for CPN induction. To that end, we have developed a software library, called Causal Explorer, that implements a suit of global, local and partial CPN induction algorithms. The toolkit emphasizes causal discovery algorithms. Approximately half of the algorithms are enhanced implementations of well-established algorithms, and the remaining ones are novel local and partial algorithms that scale to thousands of variables and thus are particularly suitable for modeling in massive datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Literature Mining using Bayesian Networks

In biomedical domains, free text electronic literature is an important resource for knowledge discovery and acquisition, particularly to provide a priori components for evaluating or learning domain models. Aiming at the automated extraction of this prior knowledge we discuss the types of uncertainties in a domain with respect to causal mechanisms, formulate assumptions about their report in sc...

متن کامل

Flattening network data for causal discovery: What could wrong?

Methods for learning causal dependencies from observational data have been the focus of decades of work in social science, statistics, machine learning, and philosophy [9, 10, 11]. Much of the theoretical and practical work on causal discovery has focused on propositional representations. Propositional models effectively represent individual directed causal dependencies (e.g., path analysis, Ba...

متن کامل

Joint Probabilistic Inference of Causal Structure

Causal directed acyclic graphical models (DAGs) are powerful reasoning tools in the study and estimation of cause and effect in scientific and socio-behavioral phenomena. In many domains where the cause and effect structure is unknown, a key challenge in studying causality with DAGs is learning the structure of causal graphs directly from observational data. Traditional approaches to causal str...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Probabilistic Active Learning of Functions in Structural Causal Models

We consider the problem of learning the functions computing children from parents in a Structural Causal Model once the underlying causal graph has been identified. This is in some sense the second step after causal discovery. Taking a probabilistic approach to estimating these functions, we derive a natural myopic active learning scheme that identifies the intervention which is optimally infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003